Sum and difference formulas
sin ( + β) = sin cos β + cos sin β
sin ( − β) = sin cos β − cos sin β
cos ( + β) = cos cos β − sin sin β
cos ( − β) = cos cos β + sin sin β
Double-angle formulas
sin 2A = 2 sinA cosA
cos 2A = cos^2(A)- sin^2(A)
= 2 cos^2(A)- 1
= 1 - 2 sin^2(A)
Products as sums
a) sin cos β = ½[sin ( + β) + sin ( − β)]
b) cos sin β = ½[sin ( + β) − sin ( − β)]
c) cos cos β = ½[cos ( + β) + cos ( − β)]
d) sin sin β = −½[cos ( + β) − cos ( − β)]
Sums as products
e) sin A + sin B = 2 sin ½ (A + B) cos ½ (A − B)
f) sin A − sin B = 2 sin ½ (A − B) cos ½ (A + B)
g) cos A + cos B = 2 cos ½ (A + B) cos ½ (A − B)
h) cos A − cos B = −2 sin ½ (A + B) sin ½ (A − B)
Monday, July 30, 2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment